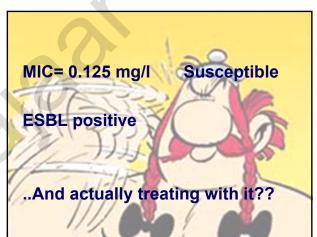
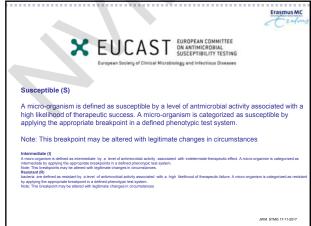
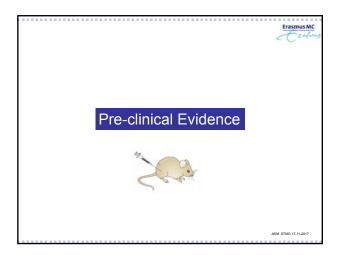


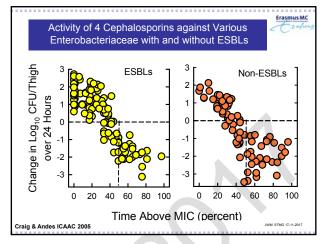
		•	cific characteristic
BJ group	Class	Substrates	Representative enzymes
1	c	Cephalosporins	E. coll AmpC, P99, ACT-1, CMY-2, FOX-
10	č	Cephalosporins	GC1 CMY-37
20	Å	Penicillins	PC1
26	A	Penicillins, early cephalosporins	TEM-1, TEM-2, SHV-1
2be	^	Extended-spectrum cephalosporins.	TEM-3, SHV-2, CTX-M-15, PER-1, VEB-1
2br	A	Penicillins	TEM-30, SHV-10
2ber	A	Extended-spectrum cephalosporins,	TEM-50
2c	A	Carbenicillin	PSE-1, CARB-3
2ce	A	Carbenicillin,	RTG-4
20	D	Cloxacillin	OXA-1, OXA-10
2de	D	Extended-spectrum	
2df	D	Carbapenems	OXA-23, OXA-48
2e	A	Extended-spectrum	CepA
21	A	Carbapenems	KPC-2, IMI-1, SME-1
3a	B (B1) B (B3)	Carbapenems	IMP-1, VIM-1, CcrA, IND-1 L1, CAU-1, GOB-1, FEZ-1
3b	B (B2)	Carbapenems	CphA, Sfh-1

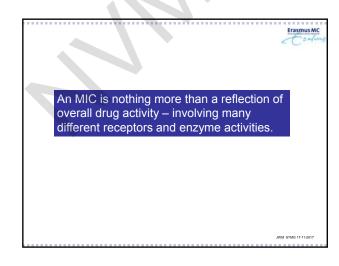




Activity /	iviics (n	ig/E) dif	ter by I	3L and	BLA	
	СТХМ 3	CTXM 15	CTXM 4	СТХМ 5	CTXM 19	
Aztreonam	128	64	32	128	4	
Moxalactam	0.5	1			2	
Cefoxitin	2	4		16	4	

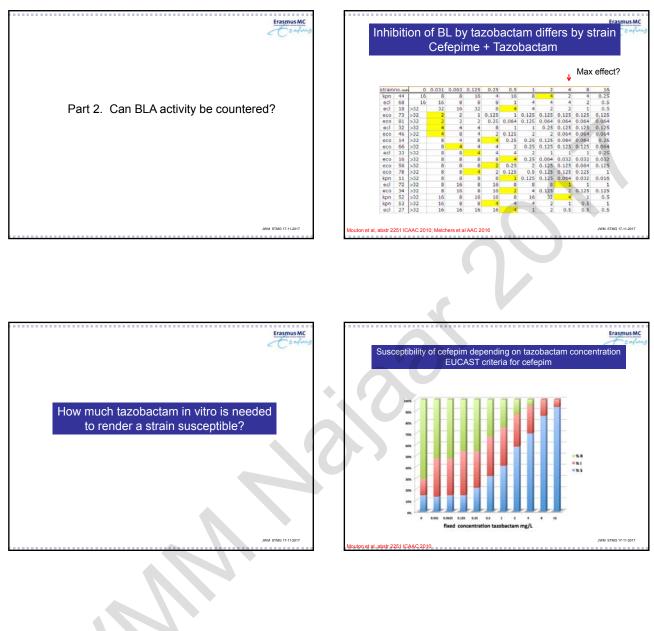


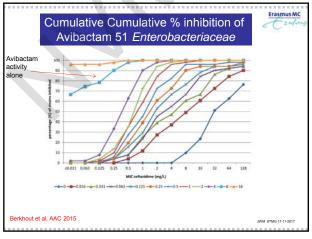


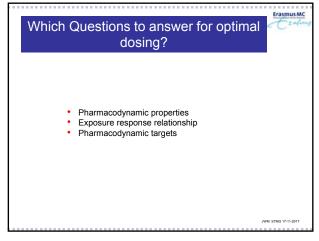

	Range of	Q 6h Static	
Organism	MICs (mg/L)	Doses (mg/kg)	%T>MIC
E. coli	8->16	930->1600	41
K. pneumoniae	1->16	189->1600	23-35
E. cloacae	0.12->16	1.0-1424	22-36
S. marcescens	0.12->16	3.1->1600	25-42
Non-ESBLs	0.12->16	3.1->1600	22-38
ESBLs	1->16	71.3->1600	23-41

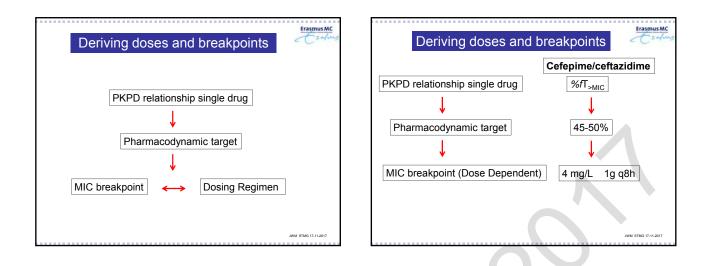
ESBL production in Enterobacteriaceae had no impact upon the %T_{>MIC} necessary for in-vivo efficacy with cefepime, ceftazidime, ceftriaxone and cefotaxime

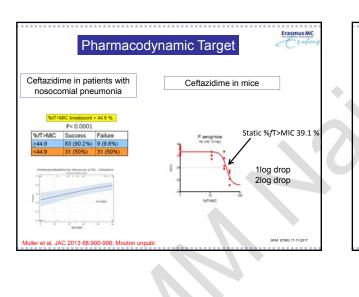
WM STMG 17-11-

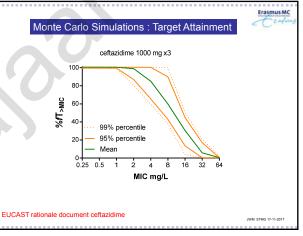

Craig et al, ICAAC 2003 A-1318

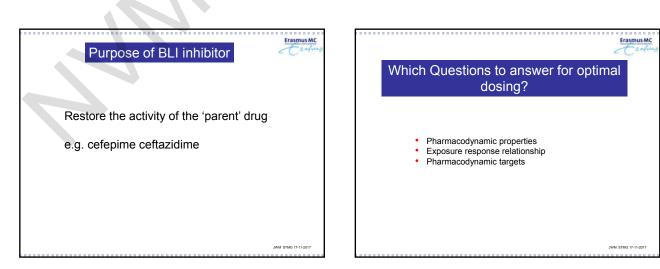

Strain	ESBL	MIC (µg/ml)	ED80 %T>MIC	dCFU 70% T>MIC
ATCC 25922	none	0.06	23	-2.56
EC 120	none	0.5	23	-1.75
EC 242	TEM 12	0.75	26	-1.51
EC 243	TEM 26	256	11	-2.26
EC 285	TEM 10	4	24	-1.44
EC 273	UNKNOWN	2	41	-1.75

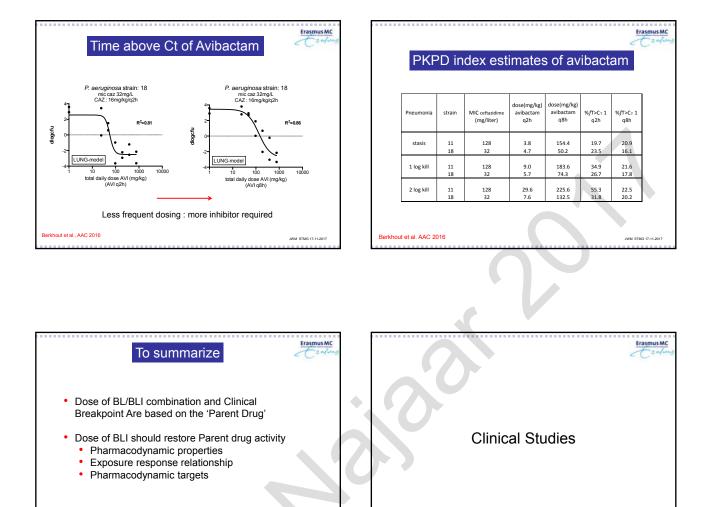


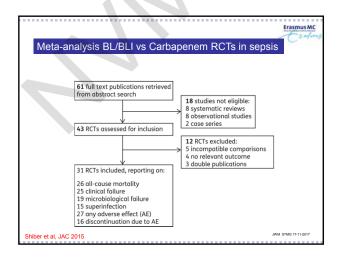


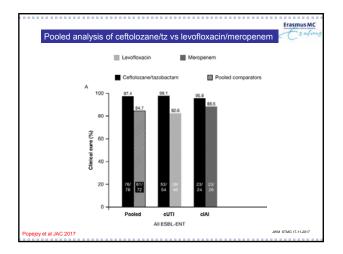

den bosch 2017

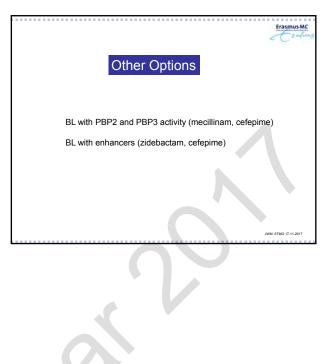











JWM STMG 17-11-2

alysis BL/	ΒL	l vs	s C	ar	bap	benem	RCTs in sepsi	s <
	BL/E		Carbap			RR	RR	
Study or Subgroup 1.5.1 Low risk	Events	Total I	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
Eklund 1993 PT-I	0	55	4	58	2.7%	0.12/0.01.2.120		
Erasmo 2004 PT-1	3	149	å	144				
Jaccard 1998 ARD PT-I		76	2	83	1.2%	0.5510.05.5.90		
Jaccard 1998 PNU PT-I	2	75	â	79	3.7%	1.23 10.43. 3.491		
Lipsky 2005 PT-F	i i	285	ŏ	289		Not estimable		
Marra 1998 PT-I	12	75	12	75	7.5%	1.00 10.48. 2.081	+	
Namias 2007 PT-E	12	247	9	247	5.6%	1.33 [0.57, 3.11]	+	
Niinikoski 1993 PT-I	2	47	1	39	0.7%	1.66 [0.16, 17.62]		
Reich 2005 PT-M	1	116	0	116	0.3%	3.00 [0.12, 72.89]		
Schmitt 2006 PT-I	17	107	11	110	6.8%	1.59 [0.78, 3.23]	+	
Solomkin 2003 PT-E Yellin 2007 TC-E	11	310	20	323	12.3%	0.57 (0.28, 1.18) Not estimable		
Subtotal (95% CI)	0	1566	0	1644	41.1%	1.03 (0.75, 1.43)	1	
Total events	66	1300	65	1044	41.1%	100 [0.10, 100]	Ť	
Heterogeneity: Chi# = 9.0		P = 0.430						
Test for overall effect Z =								
1.5.2 Unclear								
Demir 2011 CS-C	2	104	1	104	0.6%	2.00 [0.18, 21.72]		
Figuera 2001 PT-I	6	69	6	68	3.8%	0.99 (0.33, 2.90)	_	
Graham 2002 PT-E	2	258 81	1	271	0.6%	2.10 [0.19, 23.03]		
Ito 2010 PT-I Joshi 2006 PT-I	12	222	20	82 215	12.4%	0.61 (0.32, 1.16) 1.31 (0.72, 2.38)	-	
Joshi 2006 PT-I Naber 2002 PT-I	23	161	12	215	10.8%	1.31 [0.72, 2.38]		
Oztoprak 2010 PT-C	6	43	12	41	7.7%	0.4810.20.1.15		
Rea-Neto 2008 PT-D	31	212	30	217	18.6%	1.06 (0.66, 1.68)	+	
Roy 2003 PT-E	0	195	0	216		Not estimable		
Saltoplu 2010 PT-I	ō	31	ō	33		Not estimable		
Vural 2010 PT-I	0	33	ō	30		Not estimable	1	
Winston 1998 CS-I	6	101	5	102	3.1%	1.21 [0.38, 3.84]	<u> </u>	
Subtotal (95% CI)		1511		1545	58.9%	0.96 [0.73, 1.25]	•	
Total events	90		94					
Heterogeneity: Chi ^a = 6.4 Test for overall effect Z =			P=0%					
Total (95% Ci)		3077					1	
		3077		3189	100.0%	0.99 [0.80, 1.22]	•	
Total events Heterogeneity: Chi ^a = 15.	158		159					
Test for overall effect Z =			17.4=0	79			0.005 0.1 1 10 200	
Test for subgroup differen			H = 1 /0	- 0.735	7 - 02		Favours BL/BLI Favours carbapenem	

JWM STMG 17-11-201

• ESBLs can be treated with beta-lactams – just determine their activity

Erasmus MC

IWM STMG 17-1

- BL/BLI combinations are effective provided that the PKPD relationships have been sorted out
- Carbapenems can be spared!